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1. INTRODUCTION 

The main point of this presentation is to explain a connection between 
the now celebrated work of  Yang and Mills (1954) on gauge fields and 
some work of my own which goes back to the same period. The work of 
Yang and Mills was published in the Physica~t Review in 1954 and the main 
results were independently found by Shaw and included in his 1954 Ph.D. 
thesis written under the supervision of A. Salam. My work was done in the 
early 1950s, but was first published in 1963 in a long survey article on 
group representations. This article was based on lectures given in 1961 and 
appeared in the Bulletin of the American Mathematical Society (Mackey, 
1963b). My work did not overlap with that of Yang, Mills, and Shaw and 
was done in a completely different spirit. The connection between the two 
will be easier to explain later in this paper. For  the moment it will suffice 
to say that the so-called "Yang-Mil ls  trick" emerges naturally from a 
development of my old work on the axiomatics of quantum mechanical 
free particles and in such a way as to make at least 
one ad hoc definition appear naturally. 

2. TWO OLD RESULTS ON THE AXIOMATIZATION OF 
QUANTUM MECHANICS 

Between 35 and 40 years ago I made two discoveries which in quite 
different ways helped me to understand why the quantum mechanics of 
particles takes the form that it does. One of these was a partial answer to 
the question: Why do we have the yon Neumann formalism in which 
observables are associated with self-adjoint operators in a Hilbert space 
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and pure states with unit vectors in the same Hilbert space? The other 
result was a partial answer to a more advanced question: Given the von 
Neumann formulation and given a system of particles, why is the Hilbert 
space chosen as it is and why are the self-adjoint operators in this Hilbert 
space which correspond to the coordinate momentum and energy observ- 
ables chosen as they are? In particular, why do the famous Heisenberg 
commutations relations hold? In the particular case of a single free particle, 
the answer I was able to give to this second question was gratifyingly 
complete. Moreover, it was almost a corollary of a theorem about unitary 
group representations which I discovered over 40 years ago in 1949 and 
published in outline form the same year. This theorem, known as the 
imprimitivity theorem, plays a major role in the purely mathematical 
theory of unitary group representations in at least two ways. On one hand, 
it may be regarded as an abstract characterization of those unitary repre- 
sentations which may be obtained from unitary representations of closed 
subgroups by the process of inducing. On the other hand, it has as a 
corollary a general procedure for constructing all of the irreducible unitary 
representations of certain large classes of groups. 

Of my two results, the first is by far the better known to this audience 
(Mackey, 1957, 1963a) and I will say little about it here except to recall 
that it depends in part on looking at the spectral theorem of Hilbert, Stone, 
and von Neumann "backward". We obtained the association between 
real-valued observables and self-adjoint operators by first obtaining an 
association between such observables and projection-valued measures on 
the real line and then using the spectral theorem to change this into an 
association between real observables and self-adjoint operators. Non-real- 
valued observables do not correspond to self-adjoint operators. In particu- 
lar, angle-valued observables correspond to unitary operators. 

Because of its relative unfamiliarity and its direct relevance to what I 
want to say here, I will now describe in outline my result on the axioma- 
tization of the quantum mechanics of free particles. 

First recall the standard description of the nonrelativistic quantum 
mechanics of a free spinless particle. In the model one finds in most 
elementary textbooks on quantum mechanics, the Hilbert space is the 
vector space ~2(x,  y, z) of all complex-valued functions x, y, z --* 0(x, y, z) 
of the three real variables x, y, and z which are measurable and such that 
S~S IO(x,Y,z)[Zdxdy dz < ~"  The self-adjoint operators X, Y, and Z 
associated with the x, y, and z coordinates of the particles are the 
multiplication operators O(x, y, z) -~ xtp(x, y, z), O(x, y, z) ~ y~O(x, y, z), 
and O(x, y, z)--,zO(x, y, z), respectively. The self-adjoint operators Mx, 
My, and Mz associated with the x, y, and z components of the linear 
momenta of the particle are the differentiation operators 
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h_ 
O(x, y, ~) --, ~ (x, y, z) 

i ~x 

~,(x, y, z) --, h ~ ,  (x, y, z) 

O(x, y, z) ~ ~ ~z 7 (x, y, z) 

respectively. 
We shall now reformulate this model in a manner which is indepen- 

dent of our choice of coordinate system, more generalizable, more precise, 
and better adapted to axiomatic treatment. However, its physical content 
will be completely unchanged. Specifically, we shall replace the operators 
X, Y, and Z by a single projection-valued measure P defined not on the real 
line, but on a model for physical space. Moreover, we shall replace the 
operators Mx, My, and M~ by a unitary representation U of the group 
generated by the translations and rotations of space. These new objects P 
and U will be defined in terms of  X, Y, Z, Mx, My, and M~, and conversely, 
given P and U and given a rectangular coordinate system in space, we may 
recontruct X, Y, Z, Mx, My, and M~. 

To obtain P from X, Y, and Z, one introduces first the three 
projection-valued measures on the real line px, py, and pz associated with 
X, Y, and Z by the spectral theorem. These may be written down explicitly. 
If  E is a measurable subset of the real line, then P }  is the projection 
operator ~ ~ ~0~,~, where ~0~(x, y, z) is one or zero according as x e E  or 
xCE. The measures PY and P )  are defined analogously. These three 
projection-valued measures on the real line may be combined by defining 
Pt:lxE2xE 3 t o  be P~ePYe2P~E~, for all product sets E~ x E 2 • E 3 where 
E~ x E2 x E 3 means the set of all x, y, and z with x~E~, ysE2, and z~E3. 
One can prove the existence of a unique projection-valued measure E--,  PE 
defined on all measurable subsets E of the set of triples of real numbers 
such that P e - P X  py p~ whenever E is of  the form E ~ x E  2 x E  3. 

- -  E I a E 2 ~ E 3  

Moreover, P can be defined directly by the formula P E(O )=  O', where 
~'(x ,y ,z)  =O(x,y ,z)  when x,y,  z e E  and ~ ' = 0  when x , y , z r  Con- 
versely, given P, one can define PX, PY, and P~ by applying P to sets of the 
form E~ x E2 x E3 where two of the Ej are the whole real line. 

It follows from the above that giving the three operators X, Y, and Z 
is the same as giving the projection-valued measure P. But with respect 
to any choice of coordinates the points of  physical space correspond one 
to one to the triples x, y, z of  real numbers and using this correspondence, 
one can make P into a projection-valued measure on a model for phys- 
ical space. Thus, giving the operators X, Y, and Z corresponding to the 
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coordinate observables is equivalent to giving a certain projection-valued 
measure defined on the subsets o f  physical space. 

Before going on to the momentum observables Mx,  M y , M  z, we make 
two observations about P. 

(a) Given P, we can at once find the self-adjoint operator correspond- 
ing to f ( x ,  y, z), where f is any real-valued measurable function of 
three real variables. It is the unique self-adjoint operator whose 
associated projection-valued measure is E ~ Pf-~cE~. 

(b) Each operator Pe has a direct physical interpretation. It is the 
operator corresponding to the observable that is one when the 
particle is observed to be in E and zero when it is observed to be 
in the complement of E. 

Our invariant description of the momentum observables is of a rather 
different character. Let g denote the group of all transformations of the set 
of all triples x , y , z  of real numbers generated by those of the form 
x , y , z - ~ x + a , y + b , z + c  (translations) and those of the form 
x, y, z --* bll.x -+- blzy + b13z , bzlX + bzzy -I- b23z, b31x + b32Y + b33z, where 
the matrix 

bll b12 b13 / 

bll hi2 b13] 

bll bl2 bl3/ 

is a real orthogonal matrix of determinant one (rotations about 0, 0, 0). 
Because of the mapping of physical space on triples x, y, z defined by a 
rectangular coordinate system, one can identify ~ with the group of 
transformations in physical space generated by the translations and rota- 
tions. Now, if c~ is any member of g, the linear transformation 
f ~ f ( ~ - l ( x , y , z ) )  = U~ is a unitary transformation of ~ 2 ( x , y , z )  onto 
itself since one checks easily that U~p = U~ Up and that U is a so-called 
unitary representation of the group ~ whose Hilbert space is the Hilbert 
space Lf2(x, y, z) of our one-particle system. Now, given this unitary 
representation U of g, we may immediately recover the operators Mx, My, 
and M~ as follows. Consider the restriction of U to the subgroup of all 
translations in the x direction. This is the subgroup of all transformations 
of the form x, y, z -~ x + a, y, z and is isomorphic to the additive group of 
the real line. Now by a celebrated theorem proved by M. H. Stone in 1930, 
for every (strongly continuous) unitary representation V of the additive 
group of the real line there is a unique self-adjoint operator A such that 
V~ = e i~A for all real a. Conversely, for every self-adjoint operator A, 
V a = e i"~ is well defined for all a and a ~ Vo is a strongly continuous 
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unitary representation of the additive group of  the real line. iA is called the 
infinitesimal generator of  V because there is a sense in which (d/da) V a = iA 
when a = O. One can show that the infinitesimal generator of  the restriction 
of U to the subgroup of  translations in the x direction is d/dx, so that M x 
is just h/i times this infinitesimal generator. The obvious analogs for My 
and M, also hold. Conversely, knowing Mx, My, and M~, one can 
immediately write down Us for any member ~ of  the translation subgroup 
of  & 

Summing up, we have shown that giving X, Y, Z and Mx, My, Mz is 
the same as giving a projection-valued measure on physical space and a 
unitary representation of the group of spatial translations. This replace- 
ment has three advantages. 

(a) It is coordinate free. 
(b) Since all operators concerned are bounded, it makes it possible to 

avoid the tricky domain questions involved in the rigorous definition of 
unbounded self-adjoint operators. 

(c) It sets the stage for the axiomatic definition of a particle which we 
propose to present below. 

The projection-valued measure P and the unitary representation U 
satisfy a simple relationship which we may readily verify by direct compu- 
tation. It reads 

g~P~U~_l = ~'~E~-1 (1) 

where (E)a is the transformation of the set E by the isometry e. When 
restricted to the spatial translations it is equivalent to the Heisenberg 
commutation relations between X, Y, Z, M~, My, and M~. 

We now start anew and assume only the von Neumann formulation in 
the abstract. We do not make any assumption about the Hilbert space 
other than separability and we do not make any assumption about the 
special form of the position and momentum operators. In fact, in line with 
the above, we do not seek coordinate operators at all, but instead seek the 
self-adjoint operators PE which for each measurable subset E of space 
correspond to the observable that is one when the particle is in E and zero 
when it is not. The Pe are necessarily projection operators (since these are 
the only self-adjoint operators taking on only zero and one) and we make 
the physically plausible assumption that they commute with one another 
and satisfy the conditions defining a projection-valued measure: 

PEPF = PE~F, PEI ~E~,:- - - = PE~ + PE2 + " ' " (2) 

when the Ej are disjoint sets, Ps = I, P~  = 0, where ~ is the empty set. 
Instead of seeking momentum operators, we invoke symmetry consider- 
ations and assume that the laws of physics are invariant under spatial 
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translations and rotations; that is, under the natural action of do on 
physical space. Given that every symmetry of the Hilbert space of states is 
implemented by either a unitary or an antiunitary operator, that the square 
of every antiunitary operator is unitary, and that every element of do is the 
square of another element, we can almost conclude that there must exist a 
unitary representation U of d o in the Hilbert space which implements the 
symmetry. However, since two unitary operators define the same automor- 
phism of the states whenever one is a constant of absolute value one tunes 
the other, we can only conclude that Uxy = Ux Uya(x, y), where a(x, y) is 
some function of x and y of absolute value one. This means that U is a 
projective or ray representation of do, which may or may not be an ordinary 
unitary representation. 

In sum, then, we assume that given a free particle, there must be some 
projection-valued measure E ~ P e  defined on the measurable subsets of 
space (from which all coordinate observables can then be derived) and 
there must be some (possibly projective) unitary representation U of do in 
the same Hilbert space which implements the symmetry of physics under 
translation and rotation. At this point, P could be an arbitrary projection- 
valued measure defined on the measurable subsets of space and U could be 
an arbitrary (possibly projective) unitary representation of  do and the 
possibilities for the pairs U, P would be enormous. However, we have not 
taken account of the fact that U implements the fact that physical laws are 
independent of orientation and position in space and that do acts on P 
through its action on space. It does not take much reflection to reach the 
conclusion that these facts demand that U and P must be related as 
follows: 

u~PEu~-I  = PtEl~-~ (*) 

for all a in do. This is just (1) above, which, as already indicated, can be 
derived by calculation in the classical model: Now, however, it appears, not 
as a property of a particular model, but as a consequence of physically 
plausible general principles. 

The interest of this relationship for us now is that it puts extremely 
strong constraints on the pairs P, U which satisfy it. There is a very general 
theorem in the theory of the unitary representations of locally compact 
groups which tells us that (to within unitary equivalence) there is precisely 
one solution of (*) for each (possibly projective) unitary representation of 
the subgroup of g consisting of all c~ which take some fixed origin of space 
into itself; that is, the group of all proper rotations SO(3). These represen- 
tations were among the first to be classified when I. Schur and H. Weyl 
extended the representation theory of finite groups to compact Lie groups. 
Thus, applying this theorem (called the imprimitivity theorem) allows us to 
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find all concrete models satisfying our axioms for a particle. It turns out 
that SO(3) has essentially only one projective multiplier a other than the 
one which is identically equal to 1 and that with this multiplier it has just 
one irreducible unitary projective representation of  every even dimension. 
One denotes the one of dimension 2l + 1 by D l, l = 1/2, 3/2, 5/2. Also, it 
has an ordinary irreducible unitary representation of every odd dimension 
and denotes the one of  dimension 2l + 1 by D', where l = 0, 1, 2, 3. The 
simplest case is that in which l = 0, so that D t is the trivial representation. 
The corresponding concrete model satisfying our axioms is the model for 
the free spinless particle with which we started. The next simplest case is 
that in which l = 1/2 and the corresponding model is the standard model 
for a free particle of  "spin 1/2." Other irreducible cases correspond to the 
standard model for particles of higher spin. We emphasize the natural way 
in which spin comes into the picture without any relativistic assumptions or 
any need to explain spectroscopic data. There is a great deal more to be 
said, but it would throw this paper out of balance to do so. For  example, 
one can discuss the case in which the underlying representation of SO(3) is 
not irreducible and so make connection with particle multiplets, one can 
discuss dynamics and be led naturally to the Dirac equations in the spin-l/2 
case, etc. For further details we refer the reader to Mackey (1968) and 
Chapter 18 of  Mackey (1978). 

3. THE AXIOMATIZATION OF PARTICLE INTERACTIONS 

There is no problem in passing from the axiomatization of a single free 
particle to that of a finite number of  such part icles--provided that the 
particles move independently and do not interact with one another. How- 
ever, particles which do not interact are not very interesting in physics and 
the essential next step is to study particle interactions from the same 
axiomatic point of view as we studied free particles above. I did some work 
in this direction in the fall of  1965 and included it in a course of  lectures 
given at Harvard at that time and again in a course of lectures given at 
Oxford in the academic year 1966-1967. These lectures were written up, 
typed, and mimeographed and in 1978, together with 9000 words of  "notes 
and references," were published in book form (Mackey, 1978). The rele- 
vant part is Chapter 19. 

In this work I considered only the case in which the particles are all 
distinct and the system is Galilean invariant. I made the plausible assump-. 
tion that the operators defining the velocity observables of  any one particle 
commute with the position observables of all other particles and that the 
operators defining the position observables are the same as they are when 
the particles do not interact. The operators defining the velocity components 
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of the jth particle are the commutators i(HXj. - XjH), i(HYj - YjH), and 
i ( H Z j -  Z/H), where H is the self-adjoint operator such that t ~ e  -ira is 
the one-parameter unitary group defining the time evolution of the system 
and Xj., Yj, and Zj are the operators defining the position observables. The 
reason for this relationship between velocity operators and the "dynamical 
operator" H is explained in Chapter 18 of Mackey (1978). On the other 
hand, the extremely natural and plausible assumption that a system of n 
distinct noninteracting particles is described by just taking the tensor 
products of the representations defining the individual particles combined 
with the results already described about the quantum mechanisms of single 
particles gives us the Xj, Yj, and Z/. 

From the above considerations and assumptions I was able to show 
that for a Galilean invariant system of n distinct particles in quantum 
mechanics, the underlying Hilbert space may be chosen to be the space of 
all square summable functions from Euclidean 3n space to a certain 
auxiliary Hilbert space ~tf o in such a manner that the X:, Y:, and Z/are the 
usual multiplicative operators f -~  x/f, f ~ y/f, f-+ z / f  and when this is done 
the dynamical operator H has the following form: 

H = 5 / ~ = , ; \ i O x / + A :  + ~yj+B: + ~z j+Cj  + (2) 

where A}, B j, Cj, V' are measurable functions from Euclidean 3-space to 
the self-adjoint operators in the Hilbert space ~ o  and the #/are constant 
multiples of the particle masses. The 3n + 1 functions A~, Bj, C~, V' de- 
termine the nature of the interaction and are all identically zero for non- 
interacting particles. One computes that the operators i (HXj -X jH) ,  
i(Hy i - Y/H), and i ( H Z / -  Z/H) defining the velocity observables are 

1 (1 0 + A  j )  1 (~ c3 , )  1 (1 ( ~ )  

Thus the assumption that the velocity operators are the same as in the 
' = B~ noninteracting case implies that A/ i = C/---0 for all j and that the 

interaction is completely described by the single function V'. If one looks 
at the special case in which all particles are spinless, then V' is a real-valued 
function and one computes that in the classical limit one has precisely the 
classical theory of n particles moving under the influence of the potential 
function V'. It is noteworthy that we obtain this result without starting 
from a classical model. This suggests that certain apparently arbitrary 
features of classical mechanics are "quantum effects" in the sense that they 
are consequences of the fact that classical mechanics must be a limiting 
form of quantum mechanics. See Chapter 19 of Mackey (1978) for further 
details. 
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The consequences of (2) were explored further in the case of general 
A j, Bj, Cj but spin zero for all particles and in the case n = 2 with general 
spin for both particles but with A j, B~, C~ -= 0. In the one case the classical 
limit exhibited "velocity-dependent forces" of the sort one finds when a 
particle moves in a magnetic field, and in the other case one is led to 
interactions of the sort found by "guessing" in early work on nuclear 
physics. Neither case was explored in depth. 

I returned to the subject 22 years later in a talk given in the summer 
of 1987 at a conference in Como and entitled "Weyl's program and modern 
physics." Section VII of my paper in the Proceedings of this conference 
(Mackey, 1988) is entitled "Particle interactions and the gauge principle." 
In it I review some of the above and remark on the probability of a 
connection with the work of Yang and Mills. The last paragraph of Section 
VII begins as follows: "The author has not yet done the detailed calcula- 
tions required to check this but would be very surprised if pursuing this line 
of thought did not lead to something very close to, and possibly more 
general than, the modern theory of non Abelian gauge fields which 
originated in the celebrated work of Yang and Mills. If so, it is interesting 
that one could have been led to it by systematically seeking to extend 
Weyl's program in the manner indicated in this section." 

The main result of the present paper is that detailed calculations have 
now been carried out which confirm the conjecture just described. The 
author confesses that at the time the text of Mackey (1978) was written he 
was not aware of the Yang-Mills  paper and the subsequent development 
of gauge theories by Gell-Mann, Salam, Ward, Glashow, Bludman, and 
others. If he had been, he might have explored much earlier the case in 
which the A j, B/, and C; are not zero and the particles are not spinless. In 
his ignorance at the time, this case seemed to be of purely mathematical 
interest. 

In all of this work, as well as in that which follows, we have worked 
purely formally, ignoring the fact that our self-adjoint operators are mainly 
unbounded and hence not everywhere defined. In particular, we have 
written 

I~O_ ~ ~ ] _ 1  OA 

' i 0x 

when A is not known to be differentiable anywhere. This indicates that the 
commutator of two densely defined self-adjoint operators may be nowhere 
defined. Evidently, in order to make sense of our argument, H must be 
subjected to regularity restrictions in addition to being required to satisfy the 
indicated commutation relations. Just what these are remains to be worked 
out. In this sense our work on the axiomatics of particle interactions 
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is less complete than our work on the axiomatics of free particles, Never- 
theless, it seems to us to be interesting and worth recording. 

4. CONNECTIONS WITH GAUGE FIELDS 

Let us simplify the exposition, as was done in Section VII of Mackey 
(1988), by restricting ourselves to two particles and replacing the problem 
of two interacting particles by the equivalent one of a single particle 
moving in a "force field." This will have the advantage of making the 
comparison with the Yang-Mills paper more direct and immediate. 

In other words, let us consider a Hilbert space ~t" of the form 
~ 2 ( x , y ,  z, ~0) ,  where Yg0 is some other Hilbert space, and let X, Y, Z 
denote the "multiplication operators" f - - * x f ,  f - - + y f ,  f ~ z f ,  where f is an 
element of Jg. These are then the position operators for a single particle 
defining the motion of a pair of particles with respect to their center of 
gravity. The motion itself is described by a one-parameter unitary group 
d ~ V, = e -ira, where H is some self-adjoint operator depending on the 
interaction between the particles. The axioms of Section 3 then translate 
into the following axioms restricting H. Let X ' =  i ( H X - X H ) ,  Y ' =  

i ( H Y -  Y H ) ,  and Z ' =  i ( H Z  - Z H ) .  Then 

i 
X X '  - X ' X =  Y Y ' -  Y ' Y =  Z Z ' -  Z ' Z = -  I (3) 

# 

where/~ is some positive real number, I is the identity, and 

X Y '  - Y ' X  = Y Z "  - Z '  Y = Z X "  - X ' Z  = X Z '  - Z ' X  

= Y X '  - X ' Y  = Z Y '  - Y ' Z  = 0 (4) 

The simplest H such that X, Y, Z, X', Y', and Z'  satisfy (3) and (4) is 

tto= J 
which corresponds to the case of two noninteracting particles or of a single 
particle moving freely. /~ is proportional to the (effective) mass of the 
particle. The problem of finding the most general interaction between the 
particles subject to the above axioms reduces to finding the most general H 
satisfying (3) and (4). 

The problem of finding the most general such H is quite easy and is 
solved by an obvious adaptation of the arguments of Chapter 19 of 
Mackey (1978). We observe first that replacing X' by (1/#)8/~x, Y" by 
(l/g) ~ / 8 y ,  and Z' by (1/#)8/8z leaves (3) and (4) unaltered. Hence 
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1 3 1 3  1 3  
X '  - - -  - -  Y '  - - -  - -  and Z '  - - -  - -  

i# ~?x' i/~ @ '  i# ?z 

all commute with X, Y, and Z. Now it is a well-known theorem in real 
variable theory that the bounded linear operators in 5~2(x, y, z, W0) which 
commute with X, Y, and Z are precisely the operators f ~ f ' ,  where 
f ' ( x ,  y ,  z) = G(x ,  y,  z ) ( f ( x ,  y,  z)) and where G is some bounded measurable 
function of x, y, and z having Values which are bounded linear operators in 
#go. Here G(x,  y,  z ) ( f ( x ,  y ,  z)) denotes the result of acting on the vector 
f ( x ,  y,  z) in Y-f0 with the operator G(x,  y ,  z). It follows easily that the (not 
necessarily bounded) self-adjoint operators which commute with X, II, and 
Z are of the same form but with G an arbitrary measurable function whose 
values are sel f -adjoint  operators in ~tf 0. We conclude that there must exist 
measurable self-adjoint operator-valued functions A, B, and C of  x, y, and 
z such that 

where A, /~, and (~ are the operators defined by the functions A, B, and C 
as indicated above. 

Now let H '  be any self-adjoint operator for which 

i ( H ' X  - X H ' )  = X ' ,  i ( H '  Y - Y H ' )  = Y ' ,  i ( H ' Z  -- Z H ' )  = Z"  

Then H -  H '  must commute with X, I1, and Z and so, by the argument 
given above, must be g for a fourth measurable function v of x, y, z and 
having self-adjoint operators in J(fo as values. Hence our problem will be 
solved if we can find a single self-adjoint operator H '  which satisfies the 
three equations at the beginning of the paragraph. But a straightforward 
calculation shows that the operator 

has the required properties. In short, the most general self-adjoint operator 
satisfying our axioms (3) and (4) is 

+ 7V+e) + ,Tg+e (5) 

where A, B, C, and v are measurable functions of x, y, z taking values in 
the space of all self-adjoint operators.in ovg o. 

Our next remark is that the physics defined by the operator (5) 
depends only on the unitary equivalence class of the operator quadruple 
H, Z, IT, Z. In particular, Hi and H 2 defined by (5) with A, B, C, v replaced[ 
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by A1,B1,  C l , v l  and A2, B2, C2, v2, respectively, will define the same 
physics whenever there exists a unitary operator  U which commutes with 
X, I1, and Z and is such that UHt U-1  = 1-12. We now seek to express the 
condition that such a U exists directly on the functions A1, B2, C~, Vl and 
A2, B2, C2, V 2. From earlier arguments we deduce at once that the most  
general U which commutes with X, Y, and Z is ~, where u is a measurable 
function of x, y, and z whose values are unitary operators in ~4" o. Given 
such a u, let us compute UH1 U-1.  This reduces at once to computing 
U(O/c?w)U -1 for w = ~  y and z and UGU -1 for G = A 1 , B 1 , C I , v  1. 
Evidently, UGU -1 = uGU -1 and it is easy to show that 

~? Ou 
U G U - I  =Ow OW u - I  

Using these facts, it is straightforward to compute that 

1 ~u 
A2 = uAlu  -1 - - - -  u -1 

i Ox 

1 au 
8 2 = b / B l , b / - 1  - -  _ _ _ / d  - 1  

lay 

1 Ou 
C2---~uCI~ t 1 - - - - - b / - 1  

i Oz 

- 1  
1)2 = UUI U 

The special case in which ~ o  is one-dimensional is the easiest to 
analyze further, for in that case the operators of  the form G all commute 
with one another and are multiplication operators by real-valued functions. 
In particular, the relations between At, B1, C1, vl and A 2, B2, C2, v2 when 
U exists become much simpler, reducing to 

1 lOu 
A2 = A1 

i u ~ x  

1 l a u  
B 2 = B !  . . . .  

i u g y  

1 lcqu 
C2 = C1 - - -  

1 /2CqZ 

V 2 - = U  ! 
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Writing u = e i~', where 2 is a real-valued function of x, y, and z, we get 

02 
A 2 = A 1  - - -  

Ox 

02 
B 2 = B 1 - __ oy 

02 
C2 = Cl & 

Z) 2 ~ V I 

In short, the scalar v is uniquely determined, but the vector A, B, C is only 
determined up to the addition of the gradient of a scalar 2. 

Before going on to the general case, where the situation is 
more complicated, let us look briefly at the classical limit of  the case 
at hand, where there is an interesting connection with electromag- 
netism. The technique for passing to the classical limit is discussed (in 
the case of spinless particles) in Chapter 19 (Mackey, 1978). It is based 
on computing the operators associated with "acceleration observables"--  
these being defined as the commutators i ( H X ' - X ' H ) ,  i ( H Y ' - Y ' H ) ,  

and i ( H Z ' - Z ' H ) ,  where X', Y', and Z '  are the operators associated 
with the velocity observables. Equivalently these operators are the double 
commutators 

- H ( H X  - X H )  + ( H X  - X H ) H  

- H ( H Y -  Y H )  + ( H Y -  Y H ) H  

- - H ( H Z  - Z H )  + ( H Z  - Z H ) H  

and are of  course invariants of the system consisting of H and the three 
position operators X, Y, and Z. When H is as above and ~ o  is one-dimen- 
sional, these double commutators can be computed quite easily and turn 
out to be the three operators 

1 Ov 1 Y', + Z', ~ (6) 
# 77 +2# 
1 Ov 1 OB 

+ Z', + X', (7) 

1 Ov 1 0C 
# -&z + V  X" ~x  ~z 2# Y'' &-z (8) 

where { . }  denotes the anticommutator of the two operator arguments. 
From this, as in Chapter 19 of Mackey (1978), one deduces that in the 
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classical limit the particle satisfies the ordinary differential equations 

c~B 0C ~?A 
2= + Uxx-2 ;  7x 

d2z ~v dx OC dy ~A ~B 
# dt 2= Oz ~--dt ~x ~z ---~ ~z 

But these are just the equations of motion of a particle of charge e and 
mass #/e in an electric field, - g rad  v, and a magnetic field, curl(A, B, C). 
Once again we see that physical effects depend only on curl(A, B, C) and 
not on A, B, C itself. 

It is interesting that we are able to derive the equations of motion of 
a particle in an electromagnetic field from general principles of quantum 
mechanics as applied to spinless particles. 

We pause to mention a connection between the derivation just given 
and a private informal lecture given by the late R. P. Feynman to Freeman 
Dyson in 1948. This lecture was briefly summarized in the lower left-hand 
portion of p. 37 of Dyson's retrospective article about Feynman in Physics 
Today (Dyson, 1989). On reading Dyson's account of this (by then) 40- 
year-old unpublished lecture, the author was immediately reminded of 
Section VII of Mackey (1988) and sent Dyson a copy with a request for 
comments and further particulars. Dyson obliged by sending a copy of his 
own (reconstructed) notes on Feynman's lecture and soon thereafter pub- 
lished these notes in the American Journal of Physics (Dyson, 1990). 

Feynman's analysis is like ours in two respects: (1) He, too, makes the 
assumption that xj2i - 2ixj is a constant times 6Jl and of course that the xj 
commute. (2) He deduces some of the features of electromagnetism. He 
goes further than we did in that he considered the time-dependent case. 
When his fields are time independent the equations he deduces, namely 
d i v H = 0  and ~?H/Ot+curlE=O, become d i v H = 0  and c u r l E = 0 ,  
which of course are implied by the equations E = - g r a d  V and 
H = curl(A, B, C) which we obtain. On the other hand, Feynman's point of 
view and motivation are quite different. In particular, (according to Dyson) 
he was not trying to axiomatize particle interactions, but to find an 
alternative to quantum mechanics. 

Now let us return to the general case in which no restriction is placed 
on the dimension of ~r so that the operator-valued functions A, B, C, and 
v do not usually reduce to real-valued functions and the operators A,/~, C, 
9, and fi do not necessarily commute with one another. In particular, the 
passage to the classical limit becomes rather more complicated. As above, 
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it depends upon computing the acceleration operators, but the result of this 
computation is less simple and the computation is lengthier. These compli- 
cations can be handled more efficiently if we change our notation and 
replace the coordinates x, y, and z by x~, x2, and x3, the operator-valued 
functions A, B, and C by A~, A2, and A 3, and the operators X, Y, and Z 
by Xl, )(2, and X 3. 

We wish to compute [H,[H,X~]] for k = 1,2, 3, where H =  
1 r ) 2  / 5#((X, + (X;)2 + (jr;)2) + ~ and Xj = i[H, Xj]. We note first that 

[H,[H, Xk]]= (Xj)2, X; + - [g, X2] 
~=1 " l 

3 1 

= Y. [(Xj)~, X~] +-[~, X2] 
2/t'j= a i 

Next we apply the easily proved general theorem that for any two 
operators F and G the commutator [F 2, G] = {F, [F, G]}, where {-} de- 
notes the anticommutator of its two arguments. We deduce that 

/~ 3 1 
[H,[H,X~] 2/ij=, t 

Now recall that 

so that 

[x~ ,xk ]=~  o+Liax  j ~, + A;'7~-~x~ +[?j, Ak] 

~ axj i axk + [~i, Ak] 

At this point it will be convenient to define 

1 OAk 1 •Aj 
i ~xj i ~xk ~- [A j, At] 

as Fj,k and notice that Fj.k = --Fkj for all j and k and Fjj = 0 for all j. 
Notice that Fj,~ is an operator-valued function for all j and k = 1, 2, 3 and 
that we may now write 

[H,[H, Xkl]=~iilE1.= 7~xj+Aj ,~Fj, k +7[v ,X~I  
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Now observe that 

~1 ~, } 1 0 l ~Fj,~ 

and that 

{e, x ; ]  = ~, gxTx~ + ~ L  = - [~, ~ L ]  + ~, = - [~, X~]  - - - -  # # i # #i Ox, 

Substituting these evaluations into the last expression for [H, [X, Xk]], we 
get finally 

where fie is the operator-valued function 

1 aFj, k +  1, ~ 1 1 av (10) 2#2j~k~xTxj ~ j ~ k  {A"FJ'k}+~[v'Ak]+-figx--7 

We shall not go on to write down the equations of motion in the 
classical limit. For our purpose it is sufficient to notice that 

Fj,~ = 7 \ ax~ axk / + [&' &] 

appears automatically as the coefficients of (1 / i )a /a j  in the expression of 
[H, [H, Xk]] as a first-order differential operator and hence is an invariant 
of the operator quadruple H, XI, X2, X3. Specifically, if U is any unitary 
operation carrying H, ~frl, *J(2, X3 into H' ,  Xl, X2, X3, and Fj, k and FS. k are 
defined from A1, Az, A 3 and A',, A;,  A'3, respectively, then it follows from 
general principles that U carries ~,k into ff},g, i.e. ffj,, = U -  l~.,  U. 

In comparing the above results with the paper of Yang and Mills 
(1954) we wish to emphasize the following. Our Hamiltonian H is defined 
by four operator-valued functions on space At, A2, A3, and v. The "b field" 
of Yang and Mills is defined by four 2 x 2 matrix-valued functions on 
space-time. The condition that H, X~, X2, X3 and H',  J(1, X-2, J(3 be unitar- 
ily equivalent is the existence of a unitary operator-valued function on 
space such that 

, ~3u 
Aj=uA]u l + i ~ u -  

V" = IJUU - 1 

for j = 1, 2, 3. Equation (3) of the Yang-Mil ls  paper reads 

B'u=S  IBuS + i S  -1 gA 
e Ox~ 
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F~,c 

and equat ion (5) is 

where B~ and B~ are gauge equivalent  to "b  fields" and S is a 2 • 2 uni tary  
opera tor -va lued  function on space-time. 

Equa t ion  (4) o f  the Y a n g - M i l l s  paper  is the definition 

c3B~ c3B~ 
+ i~(B~,Bv - B~Bu) 

#x~ Qx, 

F'. = S-'F. S 

which is p roved  by compu ta t ion  f rom equat ion  (3). The  only mot iva t ion  
given for  mak ing  the definition o f  equat ion (4) is "O the r  simple functions 
of  B than (4) do not  lead to such a simple t r ans fo rmat ion  p rope r ty"  [see 
(5)]. In our  theory the expression ~ A k / O x j - c 3 A j / a x  k + i ( A j A k - A k A j )  
occurs natural ly  in such a way that  its invariance propert ies  follow f rom 
general principles. 
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